Pythonで動かして学ぶ! あたらしい数学の教科書
序章 イントロダクション
0.1 本書の特徴
0.2 本書でできるようになること
0.3 本書の対象
0.4 人工知能(AI)とは?
0.5 人工知能向けの数学
0.6 本書の使い方
第1章 学習の準備をしよう
1.1 Anacondaのインストール
1.2 Jupyter Notebookの使い方
1.3 サンプルのダウンロードと本書の学び方
第2章 Python の基礎
2.1 Pythonの基礎
2.2 NumPyの基礎
2.3 matplotlibの基礎
第3章 数学の基礎
3.1 変数、定数
3.2 関数
3.3 べき乗と平方根
3.4 多項式関数
3.5 三角関数
3.6 総和と総乗
3.7 乱数
3.8 LaTeXの基礎
3.9 絶対値
COLUMN ディープラーニングが躍進する理由
第4章 線形代数
4.1 スカラー、ベクトル、行列、テンソル
4.2 ベクトルの内積とノルム
4.3 行列の積
4.4 転置
4.5 行列式と逆行列
4.6 線形変換
4.7 固有値と固有ベクトル
4.8 コサイン類似度
第5章 微分
5.1 極限と微分
5.2 連鎖律
5.3 偏微分
5.4 全微分
5.5 多変数合成関数の連鎖律
5.6 ネイピア数と自然対数
5.7 最急降下法
COLUMN シンギュラリティと指数関数
第6章 確率・統計
6.1 確率の概念
6.2 平均値と期待値
6.3 分散と標準偏差
6.4 正規分布とべき乗則
6.5 共分散
6.6 相関係数
6.7 条件付き確率とベイズの定理
6.8 尤度
6.9 情報量
COLUMN 自然言語処理とは
第7章 数学を機械学習で実践
7.1 回帰と過学習
7.2 分類とロジスティック回帰
7.3 ニューラルネットワークの概要
7.4 学習のメカニズム
7.5 単一ニューロンによる学習の実装
7.6 ディープラーニングへ
Appendix さらに学びたい方のために
AP 1 書籍や動画で学ぶ